Сайт о диарее и расстройстве желудка

Биотоки мозга. Методы уменьшения избыточности информации

Биотоки мозга при различных заболеваниях

А. Ф. Макарченко и Н. Л. Горбач отметили значительное разнообразие электроэнцефалографических картин при рассеянном склерозе и, следовательно, отсутствие какойлибо специфичности изменений биотоков мозга при этом заболевании. Доминировали значительная дезорганизация и десинхронизация аритма, нередко с усилением как быстрых компонентов ЭЭГ, так и с замедлениями и появлением 0волн. Аволны наблюдались лишь у одной больной с давностью заболевания около 20 лет и с выраженной симптоматикой поражения головного мозга.

С точки зрения понимания изменений основной ритмики в ЭЭГ при патологическом нарушении корковоподкорковых взаимоотношений представляет определенный интерес состояние биоэлектрических явлений в коре головного мозга при хронической форме энцефалитов, в частности при эпидемическом энцефалите.

Между характером нарушений ЭЭГ и клиническими проявлениями эпидемического энцефалита имеется определенная связь. Так, при акинетической форме паркинсонизма электрическая активность понижается, а при гиперкинетическои повышается.

Исследование колебаний биоэлектрических потенциалов у больных с акинетической формой паркинсонизма обнаружило общее ослабление электрической активности коры мозга, аритм по частоте не превышает 8-10 колебаний в секунду. Его амплитуда неравномерна, отмечаются частые перерывы до 2,5 секунд. Во всех отведениях регистрируются медленные волны, которые при освещении глаз либо не изменяются либо несколько учащаются.

В литературе имеются интересные данные об изменениях электрической активности мозга и при таком общем инфекционном заболевании, как ревматизм, характеризуемый широко распространенным поражением соединительной ткани.

Первое исследование в этой области проведено Ниманом на 20 больных. Несмотря на то, что за малым исключением у всех больных наблюдалась клинически благоприятно протекающая форма ревматизма (легкие артриты, кардиты со спонтанным улучшением впоследствии) без значительных психических и неврологических проявлений, у 14 из них была обнаружена явная электроэнцефалографическая патология, аритм был ослаблен, иногда отсутствовал, доминировали билатеральные медленные д и в волны; в отдельных случаях отмечалась тенденция к уплощению, сглаживанию кривой биотоков; в одном случае регистрировались локализованные острые волны При серийном обследовании ЭЭГ в процессе выздоровления у половины больных наблюдалась нормализация ЭЭГ с уменьшением медленных колебаний и появлением а ритма. Автор отмечает лишь слабую корреляцию между тяжестью соматической ревматической симптоматики и степенью патологичности, в половине случаев при клиническом улучшении ЭЭГ нормализовались очень медленно и недостаточно, что, по мнению автора, свидетельствует о наличии хронического су клинического последействия.

М. Г. Астапенко из 20 обследованных больных неспецифическим инфекционным полиартритом обнаружила 18 нарушение ЭЭГ в виде угнетения аритма или явлений дизаритмии; иногда появлялись также и медленные патологически Дволны. И. А. Бронзов изучал биоэлектрическую активность мозга у 40 больных острым и подострым ревматическим полиартритом и ревмокардитом. Автор считает, что острые формы ревматизма характеризуются доминированием аритма высокой амплитуды. Переход процесса в фазу подострого течения характеризуется снижением уровня электрической активности, главным образом за счет снижения амплитуды и процентного содержания аритма. По наблюдениям Бронзова, динамика ЭЭГ имеет определенное прогностическое значение, указывая в ряде случаев на последующее благоприятное или неблагоприятное затяжное течение заболевания.

Электроэнцефалографические исследования при церебральном ревматизме в отечественной литературе впервые представлены работами М. М. Модель и Т. П. Симеон. Они приводят четыре наблюдения, в которых у больных с различными формами ревматического поражения головного мозга на ЭЭГ были обнаружены диффузные изменения в виде тахиритмий, слабо выраженных Дволн, отдельных пикообразных потенциалов.

Нервы пронизывают все тело и благодаря им организм выступает как единое целое. Стоит перерезать нерв, ведущий к какой-либо мышце, и она становится парализованной, подобно тому, как перестает работать цилиндр мотора, если порвать провод, передающий импульсы тока запальной свече.

В школе нам рассказывали об опытах Гальвани по возбуждению нервных окончаний лапок лягушки. Все видели, что при подключении тока к определенным точкам, лапки лягушки начинают сокращаться. Это подтверждает предположение о том, что нервный импульс имеет электрическую природу. Фактически передаваемый волокнами нервный импульс представляет собой кратковременный электрический импульс.

После этих опытов нервы стали воображать электрическими проводами, предающими сигналы от мозга ко всем органам. Современные исследования показали, что это не совсем верно. Нерв – не электрический провод, а, скорее, релейная линия. Поступающий сигнал передается только соседним участкам линии, где он усиливается, а затем передается дальше, снова усиливается, и снова передается, пока не достигает конечной точки. Благодаря этому сигнал может быть передан без ослабления на значительные расстояния, несмотря на естественное затухание в канале передачи.

Тело нейрона не отличается от других клеток ни своими размерами, ни другими особенностями. Однако нейрон, в отличие от других клеток, имеет не только клеточное тело – он рассылает для исследования отдаленных частей организма дендриты (отростки). Отростки распространяются на небольшие расстояния. Один только аксон, диаметром менее 0,01 мм, отходит от нейрона на громадные расстояния, измеряемые сантиметрами и даже метрами. Все нейроны ЦНС собраны вместе в головном и спинном мозге и образуют серое вещество.

Механизм работы аксона до конца не понят. Его можно упрощенно представить себе как длинную цилиндрическую трубку с поверхностной мембраной, разделяющей два водных раствора разного химического состава и разной концентрации. Мембрана подобна стенке с большим количеством полуоткрытых дверей, сквозь которые ионы растворов могут протискиваться только с большим трудом. Самое удивительное в том, что электрическое поле "притворяет эти дверцы", а с его ослаблением они открываются шире. В состоянии бездействия внутри аксона находится избыток ионов калия; снаружи – ионов натрия. Отрицательные ионы сконцентрированы главным образом на внутренней поверхности мембраны, и поэтому она заряжена отрицательно, а наружная поверхность – положительно.

При раздражении нерва происходит частичная деполяризация мембраны (уменьшение зарядов на ее поверхностях), что ведет к снижению электрического поля внутри нее. В конце концов происходит местная деполяризация мембраны. Так возникает нервный импульс. Собственно говоря, это импульс напряжения, вызванный протеканием тока через мембрану. В этот момент "приоткрываются дверцы" для калиевых ионов. Проходя на поверхность аксона, они постепенно восстанавливают то напряжение (около 0,05 В), которое было у невозбужденного нерва.

При деполяризации участка мембраны появляется электрический ток, направленный от неактивных пока участков мембраны к деполяризованному участку. В результате возникает новый деполяризированный участок, который, в свою очередь, возбуждает процессы в соседнем участке и т.д. Самовоспроизводящееся состояние деполяризации начинает распространяться по неровному волокну, не затухая, со скоростью около 120 м/с. Это и есть скорость движения нервного импульса. Нетрудно сосчитать, что импульс от мозга до кончика пальцев па ноге у человека, ростом два метра, дойдет меньше, чем за одну миллисекунду.

Ионы натрия и калия, смещенные при прохождении импульса со своих насиженных мест, постепенно возвращаются обратно непосредственно сквозь стенку за счет химических процессов, механизм которых пока еще до конца не выяснен.

Вызывает восхищенное удивление, что все поведение высших животных, все творческие усилия человеческого мозга основаны, в конечном счете, на этих чрезвычайно слабых токах и тончайших, микроскопических химических реакциях.

Мозговые волны

В мозге непрерывно совершаются электрические процессы. Если на лоб и затылок наложить металлические пластины, соединенные через усилитель с регистрирующим прибором, то можно зафиксировать непрерывные электрические колебания коры головного мозга. Их ритм, форма и интенсивность существенно зависят от состояния человека. В мозге сидящего спокойно с закрытыми глазами, не думающего ни о чем человека совершается около 10 колебаний в секунду. Когда человек открывает глаза, появляются более быстрые нерегулярные колебания. Когда человек засыпает, ритм волн замедляется, а амплитуда их нарастает. Во время сновидения характер колебаний несколько изменяется, что позволяет довольно точно определить.момент начала и конца сновидения.

При заболеваниях мозга характер электрических колебаний меняется особенно резко. Так, патологические колебания при эпилепсии могут служить верным признаком заболевания. Все это доказывает, что мозговые клетки находятся в состоянии постоянной активности, и большие количества их колеблются вместе и одновременно, подобно музыкальным инструментам большого оркестра.

Поступающие в мозг нервные импульсы не идут проторенными путями, а меняют свою картину распределения колебаний в коре больших полушарий. Характер электрической активности мозга меняется с возрастом в течение всей жизни и обучения. Надо полагать, что электрические колебания не просто сопутствуют работе мозга, как шум – движению автомобиля, а являются существеннейшим моментом всей его жизнедеятельности. У ЭВМ, способной выполнять отдельные функции мозга даже лучше, чем он сам, именно электромагнитные процессы определяют всю работу.

Нужно подчеркнуть, что каждому ощущению, каждой мысли отнюдь не соответствует свое собственное, определенное колебание. О чем думает человек, по форме электрических колебаний определить нельзя. Какие функции выполняют эти процессы в мозге, мы пока не знаем, но они отчетливо показывают, что материальной основой мышления являются электрохимические процессы превращения энергии и информации.

Мозг как электрохимическая система излучает электромагнитные волны и имеет собственное электромагнитное поле. Он использует комбинированный способ передачи сообщений, как в самом мозге, так и ко всем другим органам тела. Каждое сообщение дублируется, передается в электрической и химической формах, которые могут переходить одна в другую. Сообщения передаются в виде электрического сигнала вдоль аксона клетки мозга, а потом переходят в химическую форму, достигая синапса – точки соединения с другой клеткой.

Для того чтобы отправить сообщение, мозг должен выработать электрический сигнал. Для этого в мозге должна быть своя "электростанция". Такая "электростанция" действительно существует, хотя и не выделена отдельным объектом. Каждая клетка вырабатывает свою часть энергии. Общая мощность "электростанции" нашего мозга около 25 Вт. Этой электроэнергии достаточно, чтобы создать электромагнитное поле необходимой силы. Мы можем применить формулы квантовой физики и высчитать, на какие расстояния может простираться сформированный нашим мозгом энергетический импульс.

Мозговой "электростанции" необходимо "топливо", в качестве которого мозг использует кислород и другие продукты быстрого горения, добываемые из пищи. Большая часть энергии нашего организма уходит на поддержание работы мозга.

Параметры электромагнитного поля мозга непрерывно изменяются, что сопровождается изменением частоты его излучения. Установлено, что в каждый момент человеческий мозг "работает" в определенном диапазоне частот. Частоты, на которых работает наш мозг в различных состояниях бодрствования и сна, сейчас хорошо изучены. Мы можем зафиксировать их с помощью элекгроэнцефалографа и получить электроэнцефалограмму мозга (далее – ЭЭГ).

Основных частот (их называют также ритмами мозга) четыре.

  • 1. В активном состоянии бодрствования наш мозг функционирует в ритме от 13 до 25 Гц. Это так называемое бета-состояние.
  • 2. Идеальное для обучения состояние "расслабленного внимания" наступает при частоте от 8 до 12 Гц. Это так называемое альфа-состояние.
  • 3. Ранние стадии сна наступают при частоте от 4 до 7 Гц. Это так называемое тета-состояние, при котором мозг перерабатывает полученную за день информацию.
  • 4. Глубокий сон (от 0,5 до 3 Гц) – дельта-состояние.

В результате экспериментов обнаружено, что мы можем намного быстрее и эффективнее обучаться, когда наш мозг находится в состоянии "расслабленного внимания ". В это состояние можно погрузиться с помощью определенных типов медитации, слушая расслабляющую, успокоительную музыку.

Опытным путем подбирались ритмы, способствующие возникновению "расслабленного внимания". Особенно хорошо мозг реагирует на музыкальные ритмы в стиле "барокко". Темп этого стиля близок к длине волны мозга, который излучается в состоянии "расслабленной готовности". Книга, читаемая под музыку "барокко", легко "вплывает" в наше подсознание, мы запоминаем ее текст без усилий.

Глубокие уровни сознания и запоминания достигаются в состояниях "альфа" и "тета", которые характеризуются субъективными ощущениями расслабленности. Именно в альфа- и тета- состояниях достигается наиболее высокий уровень концентрации творческих способностей. Как можно достичь этого состояния? Тысячи людей делают это при помощи ежедневной медитации или расслабляющих упражнений. О медитации мы будем говорить отдельно. Это особенное состояние человека, когда его мозг открыт и настроен на восприятие определенных энергоинформационных полей. Из древних эзотерических книг следует, что в состоянии медитации совершаются великие подвиги постижения истины. Научиться медитировать означает научиться учиться.

Медитацией в классах заниматься неудобно. В это состояние каждый человек входит в своем режиме и в наиболее подходящих именно для него условиях. В классах определенные состояния достигаются с помощью специально подобранной музыки. Воздействие некоторых музыкальных произведений может дать те же результаты гораздо быстрее и проще. Американский профессор В. Уэбб, проводивший длительные исследования по подбору музыки для обучения, пришел к выводу, что определенные типы музыкального ритма помогают расслабить тело, успокоить дыхание, угомонить болтовню бета-ритмов и привести мозг в состояние расслабленного внимания, в котором человек исключительно восприимчив к новой информации.

Правильно подобранный ритм музыкальных произведений помогает нам запоминать сообщения. Телевизионная реклама доказывают это ежедневно. Исследователи обнаружили, что для усвоения различной информации требуется различная музыка, но в большинстве случаев, как уже говорилось, предпочтительнее музыкальные фрагменты в стиле "барокко". Преподаватели, понимающие, что нужно мозгу, в обязательном порядке используют музыку на учебных занятиях. Музыкальное сопровождение является неотъемлемой частью всех систем ускоренного обучения.

Что же касается людей, выбравших самостоятельное обучение, то смысл приведенного выше утверждения прост: включите правильную музыку, когда собираетесь повторить выученный материал, и вы вспомните его гораздо легче.

Наш мозг работает максимально, когда мы засыпаем, и это объясняет ЭЭГ мозга: мозг "просматривает" фотографии основных событий дня. Исследователи полагают, что именно в этом состоянии мозг анализирует и "рассылает" информацию на сохранение в различные ячейки памяти.

Важно подчеркнуть, что в каждый момент наш мозг работает на определенной частоте. Все другие также присутствуют, но с меньшей интенсивностью. Кроме основных частот (несущих) мозг генерирует и вспомогательные частоты (поднесущие), а также их многочисленные гармоники. Для эффективного обучения нужно избирать частоту, на которой наиболее эффективно происходит восприятие, понимание и удержание новой информации. Для этого мозгу нужно максимально "настроиться". Вот почему обучение, в котором мы хотим добиться успеха, должно начинаться с релаксации.

  • – используйте "расслабленное внимание": это именно то состояние мозга, которое особенно эффективно дли обучения;
  • – если вы находитесь в бодрствующем состоянии – выступаете перед людьми или работаете над интересующей вас проблемой, – ваш мозг, вероятнее всего, работает в ритме от 13 до 25 Гц (бета-уровень); это состояние не является лучшим для стимуляции долгосрочной памяти;
  • – идеальная для подсознания активность мозга происходит на частоте от 8 до 12 Гц. Это альфа-уровень, состояние расслабленного внимания, которое максимально способствует усвоению фактов и усиливает память.

Ф. Н. Гоноболин. "Психология "
Изд-во "Просвещение", М., 1973 г.

Приведено с небольшими сокращениями

В коре мозга находятся участки, куда по сенсорным (чувствительным) нервным волокнам поступают возбуждения от определенных органов чувств и откуда идут соответствующие «команды» к мышцам для совершения ответной реакции. Если возбуждать те или иные участки мозга непосредственно, то также можно вызвать некоторые ощущения. В результате сложных опытов ученые установили, что, например, возбуждение слабым электрическим током участка в затылочной части коры вызывает зрительные ощущения, в височной части - слуховые ощущения и т. п.
Наблюдая животных, которым вживляли в мозг очень тонкие электроды, ученые установили, что там есть центры, управляющие эмоциями. В глубине мозгового ствола имеется участок, который можно было бы назвать «центром удовольствия».
Во время опыта крысе вживляли в этот центр электрод и раздражали участок слабым током. Он вызывал у животного очень приятное состояние. Физиологи сумели выработать у крысы навык, чтобы она сама нажимала особый рычажок, который включал ток, идущий через электрод в «центр удовольствия». Теперь животное стало часто нажимать этот рычажок. Когда голодная крыса увидела в одном углу клетки корм, а в другом - рычажок, она устремилась к последнему. Значит, удовольствие, которое она получала от воздействия тока, было сильнее чувства голода.
О наличии в коре мозга участков, которые управляют той или иной психической деятельностью, говорят и следующие факты. Если у человека поражена заднелобная часть полушария, то он лишается способности говорить, а повреждение левой височной области мозга приводит к тому, что человек утрачивает способность слышать и воспринимать чужую речь. Таким образом, нервные процессы локализованы (связаны с определенным местом).
Однако мозг человека устроен так, что нередко функции пораженных участков могут начать выполнять другие его центры, и утраченные способности восстанавливаются.
Мозговой ствол тонизирует (возбуждает) работу коры. Этому усилению жизнедеятельности служит особое сетевидное вещество в подкорковой области мозга, называемое ретикулярной формацией. Она играет важную роль в поддержании бодрствования и активного внимания человека.
Учеными установлено, что в мозге возникают слабые электрические токи, которые стали называть биотоками. Чтобы уловить их, пользуются особо сложным и чувствительным аппаратом - осциллографом. Его соединяют с электродами, которые закрепляют на голове человека. При помощи этого устройства биотоки мозга не только улавливаются, но и усиливаются во много раз, и особый аппарат может их записать в виде кривой. Она имеет различный характер в разные моменты жизни человека.
Если человек находится в спокойном состоянии, лежит или сидит, то в коре мозга наблюдаются так называемые альфа-волны, с числом колебаний 8-13 в секунду. Если предложить человеку напряженно думать (например, решать в уме нелегкую арифметическую задачу), то кривая его биотоков принимает совсем другой вид: появляются так называемые бета-волны, с большей (чем у альфа-волн) частотой колебаний (от 18 до 30 в секунду) и с меньшей амплитудой. В мозге спящего человека отмечаются особые дельта-волны, с числом колебаний 4-5 в секунду.


Нервы пронизывают все тело и благодаря им организм выступает как единое целое. Стоит перерезать нерв, ведущий к какой-либо мышце, и она становится парализованной, подобно тому, как перестает работать цилиндр мотора, если порвать провод, передающий импульсы тока запальной свече.

В школе нам рассказывали об опытах Гальвани по возбуждению нервных окончаний лапок лягушки. Было установлено, что при подключении тока к определенным точкам, лапки лягушки начинают сокращаться. Это подтвердило предположение о том, что нервный импульс имеет электрическую природу. Фактически, передаваемый волокнами нервный импульс представляет собой кратковременный электрический импульс.

Нервы стали представлять электрическими проводами, предающими сигналы от мозга ко всем органам. Современные Исследования показали, что это не совсем верно. Нерв - не электрический провод, а скорее напоминает релейную линию. Поступающий сигнал передается только соседним участкам линии, где он усиливается, а затем передается дальше, снова усиливается, и снова передается, пока не достигает конечной точки. Благодаря этому сигнал может быть передан без ослабления на значительные расстояния, несмотря на естественное затухание в канале передачи.

Тело нейрона не отличается от других клеток ни своими размерами, ни другими особенностями. Однако нейрон, в отличие от других клеток, имеет не только клеточное тело, - он рассылает для исследования отдаленных частей организма дендриты (см. рис. 6.5). Они распространяется на небольшие расстояния. Один только аксон, диаметром менее 0,01 миллиметра, отходит от нейрона на громадные расстояния, измеряемые сантиметрами и даже метрами. Все нейроны центральной нервной системы собраны вместе в головном и спинном мозге, образуют серое вещество.

Механизм работы аксона до конца не понят. Его можно упрощенно представить себе как длинную цилиндрическую трубку с поверхностной мембраной, разделяющей два водных раствора разного химического состава и разной концентрации. Мембрана подобна стенке с большим количеством полуоткрытых дверей, сквозь которые ионы растворов могут протискиваться только с большим трудом. Самое удивительное в том, что электрическое поле "притворяет эти дверцы", а с его ослаблением они открываются шире. В состоянии бездействии внутри аксона находится избыток ионов калия; снаружи - ионов натрия. Отрицательные ионы сконцентрированы главным образом на внутренней поверхности мембраны и поэтому она заряжена отрицательно, а наружная поверхность - положительно.

При раздражении нерва происходит частичная деполяризация мембраны (уменьшении зарядов на ее поверхностях), что ведет к снижению электрического поля внутри нее. В конце концов происходит местная деполяризация мембраны. Так возникает нервный импульс. Собственно говоря, это импульс напряжения, вызванный протеканием тока через мембрану. В этот момент "приоткрываются дверцы" для калиевых ионов. Проходя на поверхность аксона, они постепенно восстанавливают то напряжение (около 0,05 вольта), которое был у невозбужденного нерва.

При деполяризации участка мембраны появляется электрический ток, направленный от неактивных пока участков мембраны к деполяризованному участку. В результате возникает новый деполяризированный участок, который, в свою очередь, возбуждает процессы в соседнем участке и т. д. Самовоспроизводящееся состояние деполяризации начинает распространятся по неровному волокну, не затухая, со скоростью около 120 метров в секунду. Это и есть скорость движения нервного импульса.

Ионы натрия и калия, смещенные при прохождении импульса со своих насиженных мест, постепенно возвращаются обратно непосредственно сквозь стенку за счет химических процессов, механизм которых пока еще до конца не выяснен.

Вызывает восхищенное удивление, что все поведение высших животных, все творческие усилия человеческого мозга основаны в конечном счете на этих чрезвычайно слабых токах и тончайших, микроскопических химических реакциях.

При отведении потенциалов от разных участков головного мозга - электроэнцефалографии - получается запись потенциалов головного мозга - электроэнцефалограмма. В. В. Правдич-Неминский (1925) записал потенциалы головного мозга млекопитающих посредством высокоподвижного струнного гальванометра. Г. Бергер (1929) для электроэнцефалографии у человека использовал малоинертный гальванометр с усилителем. У человека потенциалы регистрируют либо во время операции на головном мозге непосредственным прикладыванием к нему электродов, либо их наружным отведением от головы, либо погружением в мозг микроэлектродов.

Для электроэнцефалографии применяются катодные или электромагнитные чернильнопишущие осциллографы, передающие без искажений очень слабые электрические колебания мозга, напряжение которых обычно составляет 5-40-50 мкв. У здоровых людей разность потенциалов редко выше 200 мкв.

Современные приборы усиливают потенциалы обычно в 4 млн. раз, но могут усиливать в 10 млн. раз и больше.

Для изучения потенциалов головного мозга используется также электроэнцефалоскопия - колебания яркости свечения 50-200 точек мозга при изменениях потенциалов (М. Н. Ливанов и В. М. Ананьев, 1960).

Электроэнцефалограмма - результат сложения во времени и пространстве многих колебаний потенциалов, имеющих разные частоты, фазы и амплитуды. Амплитуда - это величина волны от пика до пика, измеряемая в миллиметрах. Амплитуда Может быть пересчитана на величину разности потенциалов в микровольтах или милливольтах.

Количественный анализ электроэнцефалограммы производится посредством автоматических электронных анализаторов и счетно-вычислительных машин. Упрощенный анализ частоты и амплитуды, основных ее составляющих, делается при помощи линейки и циркуля. На электроэнцефалограмме здорового человека различают четыре основных типа волн, отражающих колебания .

Альфа-ритм . Характерные, почти регулярные колебания потенциалов бодрствующего спокойного мозга, когда внимание ни к чему не привлечено, нет зрительных, слуховых и других раздражений и расслаблена мускулатура. Это медленные, длинные и большие волны, имеющие синусоидальную форму. Каждая альфа-волна - это колебание потенциала длительностью 90-120 мс. Альфа-ритм равен 8-13, в среднем 10 Гц, амплитуда 50-100 мкв. Альфа-ритм хорошо выражен при лежании с закрытыми глазами. Имеются некоторые индивидуальные его отличия. Альфа-ритм отчетливо виден только у людей и обезьян, преобладает в затылочной области. Альфа-ритм, регистрируемый в области кожного и проприоцептивного анализатора, называется роландическим . При открывании глаз и возникновении зрительных образов альфа-ритм исчезает. У людей, обладающих живым зрительным воображением, он отсутствует, а у тех, у которых преобладают слуховые или кинестезические восприятия, он сохраняется даже при открытых глазах и активном мышлении. Неустойчивость альфа-ритма отмечена примерно у 2/3 здоровых людей, отсутствие - у 15%, а у остальных - устойчивость. Характер альфа-ритма врожденный. Он является результатом деятельности коры и ретикулярной формации.

Бета-ритм - характерные для деятельного состояния мозга, более быстрые, короткие и малые волны. Длительность одиночного колебания потенциала 40-50 мс. Бета-ритм равен 14-100 Гц и более (у человека - от 80 до 250 Гц). Амплитуда 5-10-30 мкв. Он преобладает в лобных и центральных областях. Амплитуда и частота бета-ритма увеличиваются при умственной деятельности и эмоциях.

Дельта-ритм - частота 0,5-3,5 Гц, обычно 3 Гц, амплитуда до 250-300 мкв. Длительность одиночного колебания потенциала 250-500 мс. Наблюдается во время сна или при нарушениях деятельности больших полушарий .

Тета-ритм - частота 4-7 Гц. Длительность одиночного двухфазного колебания потенциала 150-250 мс. Тета-ритм регистрируется при отрицательных эмоциях, неприятных и болевых раздражениях, прекращении удовольствия. Обусловлен функцией лимбической системы и зрительных бугров. Регистрируется в гиппокампе при голодании и оборонительных рефлексах животных.

Наибольший размах колебаний свойствен дельта-ритму, наименьший - бета-ритму. Кроме того, наблюдается сверхмедленный ритм как результат суммирования постсинаптических потенциалов (частота 1-8 в 1 мин). Существуют спонтанные колебания мембранного потенциала, ВПСП и реже ТПСП. В пирамидных нейронах пик достигает 85 мв, а в клетках нейроглии - 50-70 мв.

Когда человек при применении условного раздражителя намерен совершить двигательный акт, на электроэнцефалограмме возникает волна Е («волна ожидания»), которая продолжается до появления безусловного раздражителя и резко обрывается в момент действия. В отличие от других вызванных ответов эта волна не изменяется даже после тысяч проб, пока внимание испытуемого не ослабевает (Г. Уолтер, 1963).

Волна Е появляется при сознательных действиях, при бессознательных - ее нет. Она неустойчива при возбуждении вегетативной нервной системы. Вещества, повышающие возбудимость нервной системы, усиливают ее, а понижающие - тормозят. Ее появление не меньше чем через 200-300 мс и длительность до 10 с позволяют предположить участие медиатора в ее возникновении.

Синхронизация - одинаково направленные по фазе и длительности колебания потенциалов в группе нейронов или в различных участках головного мозга. При этом амплитуда волн увеличивается и формируется их альфа-ритм.

Десинхронизация - нарушение синхронизации. При этом регистрируются разные быстрые колебания потенциалов малой амплитуды.

При статических мышечных усилиях наблюдается длительная десинхронизация, при динамической работе каждое новое движение вызывает десинхронизацию, сменяющуюся синхронизацией.

Электроэнцефалограмма представляет собой относительно постоянный показатель, имеющий основное физиологическое значение. Она не зависит от изменений сердечной деятельности и . Однако усиленная гипервентиляция легких, вызывающая сдвиг реакции в щелочную сторону, резко нарушает нормальный ритм любой электроэнцефалограммы. У большинства людей глубокое дыхание в течение 3 минут при нормальном содержании сахара в крови существенно не изменяет ритма электроэнцефалограммы. Так как электроэнцефалограмма отражает обмен веществ нейронов, а альфа-ритм является выражением их нормального физиологического состояния, то кислородное голодание, снижение содержания сахара в крови и алкоголь замедляют ритм и уменьшают разность потенциалов, а фенамин, кофеин и адреналин учащают ритм. При торможении, утомлении, истощении и кровопотерях альфа-ритм отсутствует, и вместо него появляется более медленный ритм (дельта-ритм). При потере сознания альфа-ритм исчезает и заменяется более редким ритмом или потенциалы совершенно исчезают. После прекращения кровообращения и дыхания потенциалы мозга ослабляются, но исчезают только через некоторое время. Наркоз также вызывает ослабление потенциалов.

При психических заболеваниях наблюдаются или стойкие медленные волны, или чаще всего быстрые волны, связанные с возбуждением. Значительное усиление потенциалов больших полушарий происходит у кроликов уже в первые минуты воздействия большими дозами проникающего облучения. У людей при действии лечебной дозы рентгеновских лучей изменения электроэнцефалограммы наступают через несколько минут (М. П. Ливанов).

Ритм зависит не только от функционального состояния коры, но и от структуры корковых полей. Для корковых полей, содержащих большое количество звездчатых нейронов, характерен альфа-ритм, а корковые тюля, в которых нет этих нейронов, характеризуются бета-ритмом. Альфа-ритм обнаружен не только в затылочной области, но и в лобной и других областях. В левом полушарии альфа-ритм имеет более низкие колебания и менее регулярен в сравнении с правым полушарием, что связано с большим развитием и большей активностью левого полушария (П. И. Шпильберг, 1947).

Исчезновение медленного альфа-ритма и появление частого бета-ритма происходит при переходе нейронов из состояния покоя в деятельное при раздражениях рецепторов, умственной работе, психическом возбуждении, эмоциях. Во время неглубокого сна наблюдаются веретенообразные ритмы 14-22 Гц, периодически изменяющиеся по амплитуде. Изменения амплитуды придают электроэнцефалограмме вид ряда горизонтально расположенных веретен. Шум в соседней комнате не влияет на ритм потенциалов мозга спящего человека, но шум в той комнате, где человек спит, вызывает появление частых ритмов, что указывает на возникновение бодрствующих участков. При действии света или альфа-ритм сразу исчезает и вместо него появляется бета-ритм. Но через некоторое время альфа-ритм вновь восстанавливается. Это восстановление регулярного ритма потенциалов указывает на то, что мозг адаптируется или привыкает к действию раздражителя. Но если выключить привычный раздражитель, то альфа-ритм вновь исчезает на некоторое время. Альфа-ритм исчезает и при отсутствии раздражений внешних рецепторов, но при раздражении внутренних рецепторов.

Напряженная умственная работа вызывает исчезновение и альфа-ритма и появление бета-ритма. Эти частые волны продолжаются во время умственного напряжения беспрерывно, и только после его окончания они исчезают, и возвращается регулярный ритм

При умственной работе в коре головного мозга, особенно в передних отделах, усиливается синхронизация потенциалов нейронов, расположенных в разных ее участках, - пространственная синхронизация. Чем сложнее умственное задание, тем больше количество и длительность корреляций между нейронами. На пространственную синхронизацию потенциалов образуется условный рефлекс.

Электроэнцефалография позволяет объективно изучать и переключение внимания испытуемого от одного раздражителя к другому, что доказывается в следующем опыте. Во время записи электроэнцефалограммы от зрительной области при отсутствии зрительных раздражений включение светового раздражителя вызывает исчезновение альфа-ритма. Если свет продолжает действовать, то внезапное включение звука вызывает появление альфа-ритма в зрительной области и его исчезновение в слуховой области. Регистрация биотоков позволяет легко установить по исчезновению альфа-ритма в соответствующих областях, видит ли, слышит ли испытуемый и т. д. Исчезновение альфа-ритма происходит вследствие нарушения синхронизации нервных клеток зрительного анализатора при действии посторонних раздражителей, так как нервные клетки, воспринимающие зрительные раздражения, способны к синхронизации своей активности (Эдриан).

У детей с 10-12 лет появляется характерный для взрослых альфа-ритм с частотой около 10 Гц. Для здоровых детей характерна большая изменчивость электроэнцефалограммы, что отличает их от взрослых. У детей не обнаружено соответствия между характером электроэнцефалограммы и их умственным развитием.

Потенциалы больших полушарий отражают физиологические свойства нейронов, их возбудимость и лабильность и протекающие в них возбуждение и торможение.

Альфа-ритм исчезает не только при действии раздражителя, вызывающего безусловный рефлекс, но и при действии раздражителя, вызывающего условный рефлекс (И. И. Лаптев, 1941; П. И. Шпильберг, 1947; М. П. Ливанов, 1945). По изменениям потенциалов удается судить о выработке приобретенных, условных рефлексов (М. Н. Ливанов, 1945-1969; А. Б. Коган, 1959-1969).

При отведении потенциалов от отдельных нейронов коры головного мозга обнаружено, что при образовании условно-рефлекторного возбуждения учащаются фоновые потенциалы отдельного нейрона, а при выработке условно-рефлекторного торможения они урежаются.

Потенциалы больших полушарий не являются регистрацией мыслей. Процесс мышления не биоэлектрический, а психический процесс. Регистрация потенциалов и мышление - два различных процесса, которые коренным, качественным образом отличаются друг от друга. Поэтому мысли не могут передаваться на расстояние посредством потенциалов, а передаются посредством слов, их звуковых или письменных обозначений, которые мы слышим или видим и иногда осязаем. Следовательно, большие полушария воспринимают мысли только через органы чувств.

Кроме того, потенциалы головного мозга чрезвычайно слабы и их можно регистрировать только при заземлении значительно более сильных электрических токов окружающих нас трамваев, троллейбусов, электрических приборов и только посредством усилительных установок, повышающих потенциалы головного моз1 а во много сотен тысяч раз.

Медленные ритмы обнаруживаются и в больших полушариях головного мозга животных. Характер потенциалов у разных видов животных отличается большим или меньшим постоянством в различных участках головного мозга и в разное время.

В коре мозжечка при неповрежденном головном мозге также обнаруживаются потенциалы, в которых различаются два ритма: медленный ритм с частотой 6-8 Гц и быстрый ритм с частотой 30-40 и 150-220 Гц. При действии афферентных импульсов в гиппокампе регистрируется регулярный ритм 4-7 Гц.

Альфа-ритм - результат совместной деятельности коры больших полушарий и ретикулярной формации таламической области. Он незначительно отличается у разных позвоночных животных.

Образование условного рефлекса, вызывающего возбуждение в области соответствующего безусловного анализатора, приводит к десинхронизации. Десинхронизация наступает также при внешнем торможении и при раздражении ретикулярной формации. Она имеет большой скрытый период.

Синхронизация характерна для условного торможения. Она наступает также при угнетении ретикулярной формации. Это привело к заключению, что образование условного рефлекса сопровождается возбуждением ретикулярной формации, а условное торможение - ее угнетением. Синхронизация деятельности нейронов, расположенных далеко друг от друга, - результат вовлечения их в совместную работу посредством подкорковых образований. Медленные сильные колебания потенциалов, охватывающие большие участки коры, связаны с влиянием подкорковых образований и носят диффузный характер. Местное изменение потенциалов в соответствующем анализаторе получается при любом кратковременном индифферентном адекватном раздражении. Оно характеризуется малым скрытым периодом и обозначается как первичный ответ . По мере превращения этого раздражения в сигнал условного рефлекса величина и форма первичного ответа изменяются. При отведении потенциалов от отдельных нейронов при помощи микроэлектродов обнаружено, что при изолированном действии условного раздражителя в одних нейронах возникает возбуждение, в других - торможение. В очагах возбуждения обнаруживается высокий отрицательный потенциал, а в очагах торможения - положительный потенциал.

Потенциалы, вызванные афферентными импульсами в ассоциативных областях, обозначаются как вторичный ответ. У людей почти все вызванные ответы - вторичные, для них характерна чувствительность к отвлечению внимания. Афферентные импульсы из специфических ядер зрительных бугров заканчиваются преимущественно в 3-м и 4-м слоях коры, а из неспецифических - в 1-м и 2-м слоях.